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1 Introduction

Among the most interesting problems in state-of-the-art
theoretical chemistry ranks the question: How can elec-
tronic states with multireference character be efficiently
treated with chemical accuracy? Multireference problems
include bond-breaking processes, biradicalic species, as
well as many transition-metal compounds. Their thorough
understanding is of great interest for different branches of
chemistry and related applied sciences. At the theoretical
level, all multireference problems share the common fea-
ture of quasi-degenerate states so that strong static elec-
tron correlation is present. A single Slater determinant
built from orbitals obtained within Hartree-Fock (HF) the-
ory [1] is therefore not a valid zeroth-order ansatz for the
electronic wavefunction and a linear combination of sev-
eral determinants, whose occupation vector differs in some
active orbitals, has to be used instead to obtain a qualita-
tively correct description resulting in the MCSCF (multi-
configurational self-consistent field) wavefunction.[2] Un-
fortunately, the inclusion of dynamical electron correlation
into the wavefunction is required as well in most cases to
obtain chemically accurate results.
For systems qualitatively described by HF theory, single-
reference coupled-cluster (SRCC) theory [3] has proven
to be a powerful approach for the inclusion of dynami-
cal electron correlation. But since the generalization of
SRCC theory to the multireference case is neither obvi-
ous nor unique, a variety of multireference coupled-cluster
(MRCC) ansätze is possible and has been proposed.[4-
10] Even though considerable effort has been devoted to
this field during the last thirty years, none of the available
MRCC ansätze has evolved yet into a computational tool as
successful and widely applicable as the SRCC ansatz.
In the following, we will give an overview of the problems
that appear when the SRCC ansatz is generalized to the
multireference case and discuss different MRCC methods
that have been developed.

2 Discussion

SRCC theory is nowadays a powerful computational tool
to explore energetics as well as molecular properties in a
routine manner. Its main advantage over configuration-
interaction (CI) methods consists in the fact that energies
obtained by SRCC theory are rigorously size-extensive,
which means that the correlation energy scales linearly with

the system size in the limit of a large system.[11] In con-
trast to CI methods that use a linear wavefunction expan-
sion, the coupled-cluster approach employs an exponential
expansion of the wavefunction

|Ψ〉 = eT̂ |Φ〉 (1)

with the cluster operator defined as T̂ =
∑
q tq τ̂q and tq and

τ̂q denoting cluster amplitudes and excitation operators, re-
spectively. |Φ〉 is a single-determinant reference state, often
the HF wavefunction. The exponential ansatz guarantees
size-extensivity of the method regardless of a truncation of
the cluster operator to a certain excitation level, which is the
reason for the great success of approximated schemes like
CC singles and doubles (CCSD) or CC singles, doubles and
triples (CCSDT).
To treat quasi-degenerate states, several approaches that
introduce only slight modifications into the SRCC ansatz
have been proposed. Among these rank for example the ac-
tive space CC method [12] and the reduced MRCC method
[13] that include several higher excitations into the clus-
ter operator. Another reasonable access to the treatment of
quasi-degenerate states is provided by approximately size-
extensive MRCI-based methods like the multireference av-
eraged quadratic coupled-cluster (MR-AQCC) method [14]
and the multireference averaged coupled-pair functional
(MR-ACPF) method.[15] In particular, the latter methods
have shown to provide reasonably accurate descriptions for
several multireference cases. However, in this paper, we
will focus on genuine MRCC approaches based on a multi-
determinantial zeroth-order wavefunction.
Before we discuss the existing ansätze let us summarize in
brief some general features that a convincing MRCC ansatz
should fulfill from the theoretical perspective. To begin
with, the ansatz ought to lead to a wavefunction that rep-
resents a valid parametrization of the full CI wavefunction
if no truncations are applied. The ansatz is furthermore ex-
pected to conserve the appealing properties of the SRCC
ansatz (1). This includes the possibility to apply truncations
to the cluster operator without losing size-extensivity. From
the technical point of view, a potentially successful MRCC
method should be implementable as an algorithm as robust
and stable as it is possible for SRCC. The computational
cost should not exceed those of comparable MRCI-based
methods to secure competitiveness. Since a large number
of determinants is often required for a valid zeroth-order de-
scription, a factorial scaling of the computational cost with
the number of active orbitals is prohibitive.
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Figure 1: Wavefunction ansätze in MRCC theory

From a high-altitude perspective all available MRCC meth-
ods can be divided into three classes, whose generic ansätze
for the wavefunction are shown in Figure 1. Early attempts
to formulate a general MRCC approach led to two different
branches of multiroot methods that treat more than one elec-
tronic state within the same calculation. Valence-universal
(VU) MRCC methods,[4] also called Fock-space CC meth-
ods, simultaneously calculate several states having differ-
ent numbers of valence electrons and are closely related to
the equation-of-motion (EOM) CC methods.[16] Different
sectors of the Fock-space are reached via the action of the
operator {eŜ} on a closed-shell reference |Φ〉.
In contrast, state-universal (SU) MRCC methods [5] cover a
manifold of electronic states with a constant number of va-
lence electrons within the same calculation. The SU ansatz
for the wavefunction, originally introduced by Jeziorski and
Monkhorst (JM), employs a linear combination of determi-
nants |Φµ〉 as reference that form the model space M. T̂µ
and cµ represent the reference-specific cluster operators and
weighting coefficients, respectively. In SU MRCC theory
the energies for all considered states and the corresponding
weighting coefficients cµ are obtained by diagonalizing an
effective Hamiltonian matrix constructed by projecting the
Schrödinger equation onto the model space∑

µ

〈Φν | ĤeT̂µ |Φµ〉 cµ = Ecν . (2)

The amplitude equations are defined via projection onto the
set of excited determinants. The JM ansatz has also been
employed to formulate state-specific (SS) MRCC theories
that always treat only one state α within a calculation. In
this case, additional sufficiency conditions have to be in-
voked to uniquely define the amplitudes as the JM ansatz
leads to an underdetermined SS MRCC wavefunction. This
problem relates to the fact that a certain excited determinant
may be reached from more than one reference. Proposed
SS MRCC approaches include the Brillouin-Wigner (BW)
MRCC ansatz,[6] the Mk-MRCC ansatz [7] introduced by
Mukherjee et al. and the MRexpT ansatz by Hanrath.[8]
Equation (2) is also valid for SS MRCC approaches with
the restriction that only one root of the effective Hamilto-
nian is physically meaningful.
Yet another MRCC approach is given by internally-
contracted (ic) methods.[9,10] The ic-MRCC wavefunction
is based on a reference-independent cluster operator that

acts on a zeroth-order MCSCF wavefunction. Equations for
determining the energy and cluster amplitudes are obtained
similarly to equation (2) by projection of the Schrödinger
equation on the reference space and its complement but pos-
sess a significantly more complicated structure compared to
this case. While state-universal and state-specific formula-
tions of ic-MRCC theory are principally possible, we will
only discuss the state-specific variant.

After having presented some important MRCC ansätze the
naturally arising question is how these ansätze perform and
which advantages and disadvantages they carry. Figure 2
summarizes a couple of relevant criteria. Regarding VU
and SU MRCC approaches it turns out that they carry two
problems that severely limit their applicabilty, although the
SU ansatz looks like a rather simple generalization of the
SRCC ansatz. The first problem is obvious: In many cases,
one is interested in a single root and the necessity to cal-
culate more than one root is just a drawback that increases
the computational cost. The other problem is more sub-
tle and consists in so-called intruder states [17] that are not
included in M, but come energetically close to it at some
regions of the potential energy surface. As intruder states
often spoil the iterative solution of the CC equations by
causing divergence problems, the choice of the model space
plays a crucial role in SU MRCC calculations.

These deficiencies may serve as a strong motivation to pur-
sue SS MRCC approaches, which avoid the intrinsic dis-
advantages of SU and VU methods by always treating one
single state α at a time. For SS MRCC methods based on
the JM ansatz, the already mentioned need to introduce suf-
ficiency conditions causes further complications. The con-
ceptionally most simple scheme is probably the Brillouin-
Wigner (BW) MRCC ansatz, where independent amplitude
equations coupled only via the effective Hamiltonian ma-
trix are obtained for each reference. However, this ansatz
does not preserve size-extensivity, thereby losing the main
advantage of CC theory. The SS MRCC ansatz introduced
by Mukherjee et. al. (Mk-MRCC) in contrast employs
more sophisticated sufficiency conditions, which lead to ex-
plicit coupling between the amplitudes for different refer-
ences and ensure rigorous size-extensivity. While the Mk-
MRCC method has proven to deliver reasonably accurate
results for some model applications,[18,19] it still suffers
from severe limitations. One drawback, introduced via the
sufficiency conditions, consists in the fact that the projected
Schrödinger equation is fulfilled only in the intersection of
the references’ excitation manifolds but not in their union.
This has been termed a violation of the “proper residual
condition” [20] and motivates the MRexpT ansatz, which
circumvents this problem by fixing the number of excited
determinants to that of cluster amplitudes and thus solving
the redundancy problem. While MRexpT has been shown
to fulfill the proper residual condition, it does not preserve
size-extensivity in general. A further, particular delicate is-
sue is revealed by looking at orbital rotations. In theory, the
energy is expected to be invariant under separate rotations
of occupied, active, and virtual orbitals, but this property
is violated by all methods relying on the JM ansatz.[21]
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VU-MRCC SU-MRCC BW-MRCC Mk-MRCC MR-expT icSS-MRCC
intruder state free yes yes no no no no

size-extensivity yes yes no yes no yes
orbital invariance ?? no no no no yes

proper residual yes yes no no yes ??
easy to implement yes yes yes yes no no

Figure 2: Comparison of several MRCC ansätze

Since this gives rise to a certain arbitrariness of energies
and molecular properties, it is considered a serious prob-
lem of JM-based methods. However, it cannot be ruled out
that the JM ansatz may be employed to formulate a fully
orbital-invariant MRCC method. A further problematic fea-
ture common to all MRCC methods based on the JM ansatz
is the linear scaling of the computational cost with the num-
ber of reference determinants. This property renders the ap-
plication of model spaces with more than six or eight elec-
trons close to impossible.
In MRCI theory, an efficient way to reduce the computa-
tional cost is provided by the use of internally-contracted
wavefunctions.[22] In analogy to that, it has been also tried
to set up an internally-contracted (ic) MRCC wavefunction.
While this ansatz possesses two distinct advantages over the
JM ansatz, namely that the number of amplitudes becomes
nearly independent of the number of reference determinants
and that the cluster operator can be chosen such that full or-
bital invariance is ensured, it leads to significant complica-
tions, too. Due to a more involved structure of the cluster
operator T̂ , the Baker-Campbell-Hausdorff expansion that
is in general employed to derive explicit expressions for the
cluster amplitudes does not truncate as it does in the case of
SRCC and JM-based MRCC wavefunctions, which signif-
icantly impedes the implementation of ic-MRCC. Several
concepts including automated implementation techniques
have been proposed to deal with this issue,[10,23] but a con-
vincing realization of the theory in a production-level code
has not yet been presented.

3 Conclusion

In this paper, we have given an overview into MRCC theory.
We presented several MRCC approaches currently under
consideration and showed that they all violate certain crite-
ria that a convincing MRCC approach is expected to fulfill.
Although remarkable progress in the field of MRCC theory
has been achieved during the last years and some MRCC
methods show reasonably well performance for model ap-
plications, it still remains an open question if it is possible
to set up a MRCC method satisfying all theoretical crite-
ria discussed. Furthermore, it is unclear if either one of the
three presented wavefunction ansätze is suited for the for-
mulation of such a method or if a novel ansatz is needed.
But even if such an optimal MRCC method exists in theory,
it needs to deliver significantly better results than SRCC,

MR-AQCC and MR-ACPF methods to prevail against the
latter. This is not a small hurdle given the often surpris-
ingly good performance of MR-AQCC and MR-ACPF and
the well-known ability of SRCC methods to correct for
quasi-degeneracy effects by inclusion of higher excitations
into the cluster operator. Despite these challenges, we are
convinced that the use of genuine MRCC methods repre-
sents the best approach to treat quasi-degeneracy effects at
a level of high accuracy and that the formulation of a perfect
MRCC ansatz is possible.
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