Dig through the JUnQ

Here you find all contributions made by external authors to JUnQ. This includes peer-reviewed articles and editorial board reviewed open questions.

Jul 142020
 
Spread the love

Klaus Roth[1] is an emeritus professor at the Freie Universität Berlin where he studied chemistry from 1964 – 1969 and completed his dissertation in 1973. After a post-doctoral stay at the Institute for Medical Research in Mill Hill, London from 1979 – 1980, he completed his habilitation at the Freie Universität Berlin in 1981. Between 1986 – 1988, he held a position as a visiting professor at the University of California in San Francisco, after which he returned to his home university as an extraordinary professor and became a full professor in 2000. During his research career, he dealt with many aspects of NMR spectroscopy but also popular science.

Klaus Roth publishes regularly in “Chemie in unserer Zeit” about the significance of chemistry in everyday life. You can find some of his articles on www.chemistryviews.org. On Nov. 28th, 2019 we invited him once again to have a talk at the university in Mainz about the chemistry of the hangover. For that occasion, students and researchers from our university were invited to send us questions from any kind of topic that we asked him together with the Young Chemists Form of Mainz in an “Ask-Me-Anything” interview. Here we present the “best-of” selection.

2

JUnQ: Which value has symmetry in your life?

Klaus Roth: Some say symmetry is the mathematical form of beauty. But I counter with a saying from northern Germany “Beten scheef hett Gott leev!” which means “God likes it a little crooked”. A little asymmetry can be charming. Of course, as an organic chemist, I had to deal with chirality and optical activity a lot.

JUnQ: What is your favorite molecule?

Klaus Roth: My favorite molecule is a chelate complex with an organic ligand, DTPA (diethylenetriaminepentaacetic acid), and a gadolinium center. It is used in nuclear resonance imagining as a contrast agent. It is not toxic and is injected intravenously in an amount of up to two grams. I have been involved in developments on this topic during my stay in San Francisco and together with the Schering AG.

JUnQ: Which historic moment in science would you like to have witnessed or even have been involved with?

Klaus Roth: Very hard to tell because there have been so many. You might find this strange, but I think very highly about the role of physics in the 1910s and 1920s. It practically turned the conception of the world and physics upside down once more every year. Just think of quantum mechanics and the discoveries of Max Planck and classic electrodynamics, that seemed to coexist incompatibly before. I guess these were exciting times!

JUnQ: Do you do any sports?

Klaus Roth: Since I am living in Berlin-Köpenick, getting in touch with soccer is inevitable (Union Berlin is my club!). I like doing sports myself and can’t imagine living without it. I am a passionate tennis player, although I’m not very good.

JUnQ: How can we imagine the young Klaus Roth, and who were your role models?

Klaus Roth: Well, I’d say just like the old one. I think I kept my essential character traits and still feel young, at least mentally. I never had a particular role model, but I have always had lecturers from whom I have learned how to do it and also how not to do it.

JUnQ: Did you always want to be a chemist?

Klaus Roth: (laughs) When I was a kid, I wanted to be a pastry chef. Amazing job! I am mad about eating cakes. Making all those pastries and pies was a dream. Then I ended up being a chemist, which is nice too. Alas, you can’t eat what you have produced.

JUnQ: What is the most drastic experience from your student days?

Klaus Roth: I remember that I nearly failed because of one experiment in quantitative analytics training. It was the analysis of the separation of sodium and potassium, and I had to repeat it seven times because I never obtained the right results. And everyone else was faster. That is the most horrible memory that I have from my inorganic practicum.

During the research on my diploma thesis, on the other hand, having the final product with the clean mass and NMR spectra in hand was a very uplifting moment, and I knew: this is my profession!

JUnQ: Which achievement in your life makes you most proud?

Klaus Roth: Being a father is the best thing I have achieved in my life. Everything else is not that important.

JUnQ: Imagine someone makes a movie about your life, who would play your part?

Klaus Roth: I cannot imagine that anyone would ever be interested in making a movie about that. But then, it absolutely must be George Clooney, of course.

JUnQ: With whom do you want to have a drink?

Klaus Roth: I guess it would be Hieronymus Bosch. He made some fantastic paintings, and I’d like to know where he got his inspiration from.

JUnQ: Which one of your talk topics is your favorite?

Klaus Roth: That’s hard to tell because I like every one of them. Perhaps, what’s most important to me has rarely been requested yet. It is the story of a young biochemist in Freiburg, Germany (in the 1930s), who’s world drastically changed within half a year. He was first praised as a rising star and later in his life even became a Nobel prize winner. Then he was sort of expelled because of his Jewish ancestry and left the institute in a rush with just the words: “I need to catch the 11 o’clock train.” His name was Hans Krebs, the co-discoverer of the citric acid cycle in England. After the war, he was the first one to take care of the reintegration of German scientists into the scientific community. An exceptional man! Unfortunately, this question did not yet attract much interest except in Freiburg.

JUnQ: How should our publication philosophy change, and how should the scientific community treat null and negative results?

Klaus Roth: Peer-reviewed journals should persist. Despite all the disadvantages and extra work that it implicates, it’s the best we have. Of course, online access to information and journals is a vital improvement compared to the dull library research of the past. Today it’s much more efficient. Negative results have always been neglected in the publications. But this is what JUnQ is trying to work against.

JUnQ: How do we approach more people outside of chemistry?

Klaus Roth: Chemists tend to think that they have a negative image in society. On the contrary, a research study from the Royal Chemical Society showed that we have a far better reputation. We are respected but don’t recognize it. What people expect from us is more communication and clarification in a language that they understand. This is not taught by universities. I think every Ph.D. student should be able to describe their projects to their grandparents within two minutes in such a way that they say: “Gosh! You are doing an impressive job!”. We need to train this because people are not ignorant per se. We simply should use an easier language to convey our passion.

JUnQ: How do we solve the problem of climate change?

Klaus Roth: It’s not possible to answer this in just a few words. In any case, something must happen soon. It is, of course, reasonable to apply strict measures. But in the long term, the industry of a solitary country will decay or at least suffer. Without international cooperation and support from the Great Powers, it won’t be possible. Right now, I’m very pessimistic, and I don’t know what else must happen before everyone sits down at one table to talk.

JUnQ: Which food should we better not eat anymore?

Klaus Roth: In my opinion, food that you can buy in the supermarket, which is already processed and packed in aluminum, just to be fried or warmed up again – like roast potatoes, for example. It is no wonder that they contain preservatives. How else could they stay on the shelves for months? They are easy to make at home and taste much better. Those convenient foods should be evaluated by how much more sense it would make and money one would save by preparing them at home.

JUnQ: Imagine that Elon Musk invites you on a trip to the moon. Would you accept the invitation?

Klaus Roth: Now? Since I have seen the spatial conditions on those space crafts, I’d say most certainly not! Apart from that, the chemistry on the moon is definitively too inorganic.

But looking at our planet from so far away – I remember one picture from one of those voyager missions where the earth was just a tiny spot in the empty space – makes us appear to be much more irrelevant than we value ourselves. I think people should be less occupied with themselves.

JUnQ: What is your favorite conspiracy theory?

Klaus Roth: Perhaps it is the anti-vaccination movement. To me, the whole discussion is incomprehensible. Just look at the statistics. It’s a shame that the anti-vaxxers profit from those who take the vaccines. Nowadays, people don’t consider hard facts anymore because their life has become too easy. They don’t know what it means to be infected and seriously ill because most of us are vaccinated against whooping cough, rubella, smallpox, and so on. Nobody worries about their physical health anymore.

JUnQ: What’s your best advice for young chemists at the beginning of their careers?

Klaus Roth: Most important: be well prepared for your job interview but be yourself. Read a newspaper daily, go to the theater, and try not to be a geek.

JUnQ: What’s your universal message to every scientist in the world?

Klaus Roth: Peace and Cheers!

JUnQ: Thank you very much for the interview!

We would also like to thank the YCF team for their support!

— Tatjana Dänzer


[1] klaus.roth@fu-berlin.de

Jul 132020
 
Spread the love

2 You might have encountered the phenomenon: You have a faucet running, for instance, while filling your bathtub, and quite a bit of water is flowing out. Then you want to stop the flow and quickly turn the valve to block the water. Suddenly, in the very moment you close the valve, you hear a banging sound in the walls around you. Sometimes it is rather quiet, sometimes it can be scarily loud. But what is actually causing the sounds and is it something you should worry about?

It turns out that the answer to this question is one of the most relevant design considerations for civil engineering.1,2 It all roots in a fundamental property of liquids: not being compressible. You may have noticed that a balloon filled with air can be compressed quite a bit while one filled with water only changes shape and cannot be made smaller. This very principle is the core of hydraulics, i.e. using the volume of a liquid like water or oil to transfer force in a system.

Maybe you are wondering now how this affects your pipes, considering that the volume of the pipe always stays the same. Nobody (hopefully) compresses the pipes in your walls. There is, however, also another important aspect to a liquid: its momentum. Once a liquid starts to move through a pipe it builds momentum just like a car or a train build momentum when they move (see Fig. 1). As long as the flow can continue undisturbed no ill effects occur and similarly, nothing happens if the flow is slowly brought to a halt by gradually closing the valve. To stay in our analogy, this would correspond to a train of cars slowing down when a road gradually narrows from two lanes to one and eventually to a road blockage.

Figure 1: Analogy of moving water and a train of cars. When the water is still, no momentum is stored in the system. Once the water moves, a significant amount of inertia can be present in the flow and if that flow is suddenly restricted by something (like a valve), the entire inertia must be transferred to the environment. That is the walls of the pipe and the valve itself. ©JUnQ.

The interesting effects happen when we force the flow of liquid to stop suddenly with a valve, essentially causing an accident on our road that causes all the cars to slam into the blockage. In this case, a rather large amount of inertia must be dissipated into the valve and the walls of the pipe causing a large pressure spike. If the pipe can move like a free garden hose (e.g. old pipes that are not properly fixed) this can lead to a sudden jerk and might loosen connections. The story is not so easy, though, for pipes that are fixed in your walls or buried beneath streets: those usually cannot move. As a result, the full force of the pressure acts on the valve and the walls of the pipe – causing the banging sound in your bathroom. The effect is officially called ‘water hammer’.3

But before you start wondering now if your pipes will one day burst and start flooding your apartment: civil engineering has developed a series of safety measured to prevent this from happening in our daily life. To understand how, it is important to know that the pressure spike caused by the sudden restriction in water flow is directly related to the flow rate. In our car analogy this would correspond to the relation between the number of lanes on the road and the number of cars that have to pass through a road segment at any given time. Together this dictates the speed the cars are traveling with and their cumulative inertia. In simple words: fast-moving cars on a narrow street do have a much harder time to slow down than a larger number of slower cars. Therefore, many supply pipes have large diameters, causing the water to flow slowly and thus avoiding the pressure spikes if the flow is restricted by one of the recipients. Additionally, air or spring-loaded pressure relief valves can engage to dissipate a dangerous spike without causing damage and water suppliers usually have build-in safety measures to make sure pumps are not starting up too quickly.

All in all, you usually do not have to worry about a slight banging sound caused by quickly closing a faucet, even though you should avoid it if possible. However, if it is loud or suddenly starts to appear you should be careful to reduce the wear and tear of your pipes or directly ask a pumper. A neat little starting point is Ref. [1]. Anyway, next time you use your sink or shower, think maybe of all the civil engineering that is necessary to let you shower or take a bath anytime at will.

Kai Litzius

Disclaimer: This article is meant to give an introduction into the physics behind the water hammer. In doubt always ask a specialist if your piping needs to be repaired.

Read more:

[1]https://home.howstuffworks.com/home-improvement/plumbing/how-to-fix-pipes5.htm
[2]https://www.youtube.com/watch?v=xoLmVFAFjn4
[3]A similar effect occurs with steam, the so-called ‘steam hammer’, which is an exceptionally dangerous phenomenon that can lead to steam pipes exploding once too much steam condenses and the condensate gets accelerated through the pipe. See also here for a great explanation: https://www.youtube.com/watch?v=JyvoN1hIqRo

Mar 102020
 
Spread the love

Traffic development

Absolute nothingness ( Śūnyata ) is one of the most exciting notions in Buddhism. Essentially, it cannot be interpreted anyhow but can be thought of as Ultimate Reality[1]. In Mediterranean tradition, ancient cosmologists introduced another term that sounds more familiar – The Chaos. It was associated with the infinite ocean and expressed an initial state of cosmos in potentia[2]. Not to get numb by the immensity of this semantic unit, we can consider chaos as noise having an infinite spectrum of all conceivable frequencies. And through interaction with external conditions, certain modes manage to become more pronounced as, for example, in the process of stimulated emission build-up in the laser[3] or during the process of natural selection in the theory of evolution.[4]

Traffic development


In the context of road traffic development, we can define the situation in ancient times as the initial chaotic state. As there were no roads as such, the traffic was chaotic. With the evolution of horse-drawn transport, the road map was developing. However, the roads were still only directions along which one could get from one place to another.

The situation changed when engine cars jolted the slow and stagnant horse traffic. Between the man and the road there was no middle link anymore that could choose a better way within the given direction on its own. Nonetheless, engine-drawn transport had an obvious advantage of higher achievable speed. In turn, the desire to move faster and faster required less scattering at the surface roughness, which inevitably resulted in roads getting smoother, i.e., less chaotic. In the meantime, the assembly line was progressing drastically and both factors lead to a dense cloud of potentially fast cars. But people were still scratching their heads why the average speed of the road traffic was not increasing. After a while, they figured out who is to blame in the residual scattering – the interaction of the drivers themselves with each other. With the absence of any predefined rules, everyone had to slow down and likely change the direction to avoid physical interaction with another participant of the traffic. Thus, the necessity of the traffic regulations was obvious.

The first “Convention with respect to the international circulation of motor vehicles” was signed in Paris in 1909[5]. Among others, it contained the sign depicted in Fig. 1, which indicated the road intersection. And naturally, originating from the ship traffic, the habitual priority-to-the-right rule was established to regulate the right-of-way for two vehicles with intersecting directions. Later a set of traffic regulations was complemented with priority signs and traffic lights.

Gödel’s theorems

In 1930 Kurt Gödel presented two theorems reflecting insuperable limitations of formal arithmetics. These theorems had a direct relation to the second problem from Hilbert’s list asking for the proof that arithmetics is consistent.[7] The first Gödel’s theorem (in Rosser form) states that within any consistent formal system S, one can come up with expression A that can be neither proved nor disproved[8]. In other words, the axiomatic system S is incomplete. Hao Wang published in his Logical Journey[9] the full text that Gödel had written about his discovery of the incompleteness theorems:

“In the summer of 1930 I began to study the consistency problem of classical analysis. It is mysterious why Hilbert wanted to prove directly the consistency of analysis by finitary methods. I saw two distinguishable problems: to prove the consistency of number theory by finitary number theory and to prove the consistency of analysis by number theory <…> Since the domain of finitary number theory was not well-defined, I began by tackling the second half <…> I represented real numbers by predicates in number theory <…> and found that I had to use the concept of truth (for number theory) to verify the axioms of analysis. By an enumeration of symbols, sentences and proofs within the given system, I quickly discovered that the concept of arithmetic truth cannot be defined in arithmetic. If it were possible to define truth in the system itself, we would have something like the liar paradox, showing the system to be inconsistent <…> Note that this argument can be formalized to show the existence of undecidable propositions without giving any individual instances. (If there were no undecidable propositions, all (and only) true propositions would be provable within the syosmos in potestem. But then we would have a contradiction.) <…> In contrast to truth, provability in a given formal system is an explicit combinatorial property of certain sentences of the system, which is formally specifiable by suitable elementary means…”

Traffic regulations in the context of the 1st Gödel’s theorem

We can consider any set of interrelated rules, including traffic regulations, as a formal axiomatic system where each axiom is not subject to prove and serves as a basis for further deriving the formulas and theorems (or behavior in a traffic situation). Clearly, the traffic regulations are consistent because otherwise, the number of car crashes would be much higher. Hence, according to the 1st Gödel’s theorem, the system is incomplete. This means that there would always exist a situation, which cannot be resolved regardless of the number of regulations (axioms) contained in the system.

The example of such a situation can be observed on the road intersection regulated by priority-to-the-right rule depicted in Fig. 2. Here four vehicles coming from every direction want to pass this intersection each going straight. There is no way to resolve this situation (to derive the formula) within the traffic regulations system and the drivers in every certain situation are supposed to make the decision: who has the priority.

We can incrementally enhance our axiomatic system by introducing another rule to resolve such a dead-end situation. A rule that gives priority to go first, say, to a red car. Again, four red cars on the same road crossing end up with the same confusion. As long as we add the rules (axioms) into the system enumerably, which is the case for the traffic regulations, such situations will always appear. Introducing the priority signs, constant or variable in time, like traffic lights, or topological road junctions (see Fig. 3) can only decrease the probability of this situation emerging.

Nowadays, most of the intersections are controlled (or topologically resolved). And let’s assume that the preposterous situation with four red cars trying to figure out the right-of-way on the uncontrolled intersection hasn’t happened up to the moment in our complex but finite system of road traffic. Hence, the drivers’ behavior seems to be fully governed with the traffic regulations. However, there still is a possibility of an unresolvable situation, namely, if one comes up with an expression: “I’m not going to obey the rules. For the axiomatic system of traffic regulations, this expression serves as a “liar paradox” and cannot be resolved. Thus people had to come up with the penalty system for acceptable performance of the traffic regulations. But again, it is impossible to nullify the probability of such a situation emerging.

Instead of conclusion

The aim of this text was not to establish a solid theory in either mathematics or law, and the presented examples may not be in strict compliance with the described statements. However, the author finds entertaining the fact that there are bridges between different islands of knowledge accumulated by mankind over the infinite ocean of the unknown.

— Sergei Sobolev

Read more:
[1] D. Mathers, M. Miller, O. Ando. Self and No-Self: Continuing the Dialogue Between Buddhism and Psychotherapy. 2013 Routledge
[2] http://www.plato.spbu.ru/TEXTS/lebedev/1/ferekid.htm
[3] W. Koechner. Solid-State Laser Engineering, 2006 Springer
[4] C. Darwin. The origin of species by means of natural selection; or, the preservation of favoured races in the struggle for life. 1859 London
[5] Convention with Respect to the International Circulation of Motor Vehicles. The American Journal of International Law Vol. 4, No. 4, Supplement: Official Documents (Oct., 1910), pp. 316-328
[6] https://upload.wikimedia.org/wikipedia/commons/f/f2/1909_Paris_Convention_road_signs.jpg
[7] D. Hilbert. “Mathematical Problems”. Bulletin of the American Mathematical Society. 8 (10): 437–479, 1902.
[8] Introduction to metamathematics. S. Kleene, 1952 D. Van Nostrand Company, Inc.
[9] H. Wang. A Logical Journey. From Gödel to Philosophy. 1996 The MIT Press.
[10] https://www.archdaily.com/64354/pearl-river-necklace-nl-architects/

Jan 122020
 
Spread the love

Just the thought of getting in touch with or even ingesting urine repels many people. But medical treatment with urine – also called urotherapy – has been a valuable approach in the traditional medicine of many cultures over the last centuries. Usually, endogenous urine is used but animals are also popular sources. The utilization of urine in conventional medicine is not uncommon too. Urokinase, for example, can be isolated from (human) urine and is an important thrombolytic agent.[1] The drug Premarin®, which is used for hormone treatment, contains estrogens that are extracted from the urine of pregnant mares.[2]

Besides milk, camel (i. e. camelus dromedarius) urine plays a special role for desert dwelling people like the Bedouin. Its use was advised by Prophet Mohammed, thus it has found its way into the Islamic prophetic medicine.[3] Apparently, this body liquid cures diseases like tuberculosis, hepatitis, digestion problems, impotence, hemorrhoids, and flatulence, just to name a few. In 2013, one liter of urine from a virgin camel was worth about 15 € (ca 20 USD) in Yemen, where it is not only used for universal medical treatment but also as a cosmetic product for skin and hair care.[4]

src="Dromadaire4478.jpg" alt="Journal of Unsolved Questions (JUnQ): A Moroccan dromedary camel ‒ a favored livestock of Bedouin people. It's urine is said to be medicative."
A Moroccan dromedary camel ‒ a favored livestock of Bedouin people.[5] (public domain – wikimedia commons)

Conventional medicine offers plenty of pharmaceutical cancer treatments which are a blessing and a curse for the patients at the same time. Besides the tedious and exhaustive treatment, patients are confronted with severe side-effects including nausea, fatigue, hair loss, inflammation, and temporary immunodeficiency. The demand for alternatives that are at the same time highly effective, easy to use, mild, and in the best case based on renewable resources is therefore very high.

Camel urine has long been claimed to be an efficient cancer treatment but detailed research on its actual potency and effect on human health is scarce. The soothing effect of pure camel urine on digestive problems can sufficiently be explained through its relatively high content of electrolytes like sodium and zinc as found by Al-Attas, in 2009 – a result that certainly might be achieved just as well by drinking a bouillon.[6] Kohrshid et al. were the first to show an inhibiting effect of lyophilized camel urine on carcinoma cells in animals.[7] In 2011, Alhaider et al. found that treatment of murine hepatoma cells (Hepa 1c1c7, i. e. liver cells) with camel urine inhibited the induction of Cyp 1a1 (a well-known cancer-activator) gene expression by TCDD, a potent Cyp 1a1 inducer and a known carcinogen. Among virgin, pregnant, and lactating camels, the virgin’s urine was found to be most potent while the urine of pregnant camels showed the least potency.[8] One year later, Khorsihd et al. showed that the potency of camel urine to reduce a specific type of lung cancer cells (A549) is somewhat dependent on the breed (Majaheem urine was found to be more effective than Magateer urine) and the age of the camels. The depletion of the cancer cells ranged between 85‒93% of the starting cell number.[9,10] The bioactive subfraction PMF which is believed to be responsible for these effects is obtained from lyophilized camel urine (in literature frequently called PM701).[10] Clinical trials on the oral uptake of PM701 fractions showed no negative effects on human health so far.[11] Apparently, the urine contains a high amount of antibodies of such a small size, that they can be easily absorbed by the patient’s digestive system.[12] Other experiments also show antimicrobial effects of camel urine on bacteria and fungi.[13] Aiming at the environmentally friendly substitution of synthetic agents which are usually obtained from complex multistep reactions this approach is most honorable. It is exciting to see that a waste product has the potential to cure severe diseases although much more research must be done on this subject to clearly verify the efficacy. After all, urine is an excretion that contains various less beneficial digestive metabolites, and even toxins that the body wants to get rid of and indisputable evidence for the efficacy and safety of the PM701 fractions are vital.

For those people who are curious enough to try camel urine for whatever reason but are too disgusted by the idea to drink it pure, a solution might be on the way: there are capsules of PM701, or PMF respectively, but they are not yet available on the market.[10] Another alternative might be camel milk which sounds much more enjoyable and is supposed to be a medicine just as magical as camel urine. It is said to “reduce blood sugar […] solve the problems of autism in children, enhance the immunity of the body…” and many more.[14] Alas, some bad news comes from the World Health Organization (WHO) concerning the use of camel milk and urine: shortly after the Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in Saudi Arabia in the year 2012 dromedary camels were found to be zoonotic transmitters, meaning that the virus is rapidly transferred from animals to humans – just as we experience right now with the latest outbreak of a coronavirus (COVID-19).[15] As a consequence the WHO advises to avoid contact with camels or consuming raw camel milk and urine.[16] This surely dampens the enthusiasm to utilize camel urine and we might have to wait a few years more for some groundbreaking results in cancer research.

‒ Tatjana Dänzer

References

[1] “Abstracts of Papers Read”. American Journal of Physiology. Legacy Content., 1952, 171, 704–781.
[2] D. Brügger, „Hormone aus Stutenharn“, pharma-kritik, 2019, Nr. 5/6/1997.
[3] Alhaidar, A., Gader, A. G. M. A., Mousa, S. A., The Journal of Alternative and Complementary Medicine, 2011, 17, 803‒808.
[4] https://www.vice.com/en_us/article/4w7gvn/drinking-camel-urine-in-yemen-fob-000300-v20n8.
[5] https://upload.wikimedia.org/wikipedia/commons/4/40/Dromadaire4478.jpg
[6] Al-Attas, A. S., Arab J. Nucl. Sci. Appl., 2009, 42, 59–67.
[7] Khorshid F., International Journal of Pharmacology, 2008, 4, 443‒451
[8] Alhaidar, A. A.; El Gendy, M. A. M.; Korashy, H. M.; El-Kadi, A. O. S., Journal of Ethnopharmacology, 2011, 133, 184–190.
[9] Alghamdi, Z.; Khorshid, F., Journal of Natural Sciences Research, 2012, 2, 9‒16.
[10] Khorshid, F. A., 2009, US 20090297622.
[11] Khorshid, F. A., Alshazly, H., Al Jefery, A., Osman, M. A.-M., Journal of Pharmacology and Toxicology 2010, 5, 91‒97.
[12] Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G., Hammers, C.; Songa, E. B.; Bendahman, N. and Hammers, R., Nature, 1993, 363, 446‒448.
[13] Mostafa, M. S.; Dwedar, R. A., British Journal of Pharmaceutical Research, 2016, 13, 1‒6.
[14] Hammam, A. R. A., Emirates Journal of Food and Agriculture, 2019, 31, 148‒152.
[15] https://www.eurosurveillance.org/content/10.2807/1560-7917.ES2014.19.16.20781.
[16] https://www.who.int/csr/don/08-january-2020-mers-uae/en/.

Dec 172019
 
Spread the love

Due to technical improvements during the last years, machines outcompete humans in a couple of specialized tasks: Whereas it can take a human person very long to calculate the square root of a (non-square) number, a computer can finish this calculation at high precision within a fraction of a second. However, there are some areas in which machines still cannot compete with nature (yet). One of them is olfaction: Currently, no device is available that could replace police dogs with the ability to detect trace amounts of molecules. Similarly, farmers sometimes even train pigs to search for truffles hidden in the soil. Of course, the ability to detect relevant molecules in low amounts offers an enormous advantage and is thus subject to extensive optimization by evolution.

https://upload.wikimedia.org/wikipedia/commons/7/7d/Brooklyn_Museum_-_L%27Odorat_-_Honor%C3%A9_Daumier.jpg
L’odorat, Honoré Daumier (circa 1839, public domain – wikimedia)

How exactly olfaction works in higher organisms has not been known for a long time. Nonetheless, it had been intuitively clear that there must be specific receptors interacting with the corresponding odours. This simple assumption has a remarkable consequence: Since mammals can distinguish a high number of odours, there also must be a high number of different receptors encoded in the genome. Indeed, the two scientists Linda Buck and Richard Axel discovered a comparatively large family of genes encoding for odorant receptors [1]. For this discovery, they were awarded the Nobel Prize in Physiology or Medicine in 2004. The activation of these receptors on the cell surface always results in similar intracellular reactions. If a cell had receptors for different odour molecules on its surface, it could therefore not distinguish these odours. In accordance to this consideration, it turned out that each olfactory cell only carries one type of all the different odorant receptors encoded in its genome. Why exactly this is the case is still not known in detail to date. Even more surprisingly, it even turned out that the axons of cells, which carry the same type of odorant receptor on their surface, end on the same set of cells.

An odour can of course consist of several kinds of molecules. The activation of different combinations of olfactory sensory neurons further increases the number of differentiable odours. A phenomenon seemingly similar to the exclusive expression of a single odorant receptor by an olfactory sensory neuron is the generation of only one type of antigen receptor by immune cells. They achieve this by a complicated recombination of genes, which is clearly not observed in olfactory neurons.

Investigating how a biological structure develops is often very helpful: In a later work, Linda Buck could show that in contrast to mature olfactory neurons, there are multiple mRNAs for different odorant receptors in immature neurons [2]. Why cells of our body can have entirely different morphologies and properties even though they all carry a copy of the same genome is a fundamental question which keeps many biologists busy. It is the differential expression of the genes in a cell, which causes these differences. This gives muscle cells the ability to contract and enables neurons to generate action potentials.

However, all olfactory neurons express a very similar pattern of genes except for their odorant receptor. One of the reasons for the transcription of different amounts of RNAs from different genes is the spatial arrangement of the DNA in the nucleus. Had it not been tightly packed into the nucleus, the DNA in each cell would have a total length of 1.8 m and highly condensed sections of DNA are usually not accessible for transcription into RNA. Stavros Lomvardas, a former member of the group of Richard Axel, could show that DNA segments encoding for odorant receptors on different chromosomes get pulled close to each other in a small spatial region in the nucleus. Interactions between the different DNA segments encoding for odorant receptors could contribute to the exclusive transcription of one specific odorant receptor gene [3,4].

The relevance of the spatial arrangement of the DNA within the nucleus for gene expression is an open question of major interest beyond olfaction. To which degree there is a specific nuclear arrangement of DNA and how this is established after cell division would then be further important for other unsolved questions in biology.

— Tobias Ruff

References

  • [1] Buck, L. and Axel, R. , A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 1991, 65-1 PP175-187 DOI:10.1016/0092-8674(91)90418-x
  • [2] Hanchate, N. K. and Kondoh, K. and Lu, Z. and Kuang, D. and Ye, X. and Qiu, X. and Pachter, L. and Trapnell, C. and Buck, L. B. , Science 2015, 350-6265 PP1251–1255
  • [3] Clowney, E. J. and LeGros, M. A. and Mosley, C. P. and Clowney, F. G. and Markenskoff-Papadimitriou, E. C. and Myllys, M. and Barnea, G. and Larabell, C. A. and Lomvardas, S., Cell 2012, 151-4 PP724–737
  • [4] Markenscoff-Papadimitriou, E. and Allen, W. E. and Colquitt, B. M. and Goh, T. and Murphy, K. K. and Monahan, K. and Mosley, C. P. and Ahituv, N. and Lomvardas, S., Cell 2014, 159-3 PP543–557

Sep 182019
 
Spread the love

Alex Steffen[1] makes enterprises future-proof. He is an expert for business strategy and innovation. He is also a no.1 Best-Selling Author and Speaker. His mission by 2025 is to empower 150,000 business leaders to future-proof their enterprise with ease. How? Alex turns business leaders into entrepreneurs. Alex Steffen was named Management Thought Leader 2019 by Change X and his book “Die Orbit Organisation” was nominated for the getAbstract International Book Award. His Keynotes “The Atlas of Innovation” and “Unstoppable Human” are international hits. Learn about Alex at https://alextsteffen.com.

[1] info@alextsteffen.com

Alex Steffen

JUnQ: What is digital citizenship? Should there be a basic education in responsible handling of digital tools in (early) schools?

Alex T. Steffen: Let’s pick a narrow definition. I understand digital citizenship as a human’s ability to be a more rounded part of society thanks to information technology. The truth is: technology often simply emphasizes the existing design.

Digital schooling isn’t better schooling, as long as schools fail to teach us the central skills required in the modern world: thinking for ourselves. In my opinion, that’s what the society and workplace of the future needs. We’re trying to stitch digital onto an outdated paradigm, which tells us that memorizing facts is fundamental to a successful career. And then we’re surprised to find that machines take away jobs.

The truth: a rounded human, well-equipped to play his or her part in society combines a unique blend of complex skills. Uniqueness is an advantage, not a disadvantage. I see micro degrees, potent mentoring, and real exposure to the world as essential ingredients of education towards digital citizenship. We don’t need any more homogenous machine workers. The new standard for humans and businesses is hyper-customization. A smart country isn’t a country that has advanced to digital citizen services only.

A smart country is a society where its citizens can create a career and life on their own terms using highly customizable (education) resources. That will make them uniquely trained and attractive according to their strengths and inclinations. Look around, the top talents are already living this very design. Now it’s our responsibility to take it from niche to commonplace.

JUnQ: What are the general problems and dangers that arise with (global) digitalization and what are possible solutions?

Alex T. Steffen: This begs the exploration of the new relationship between digital processes and human habits. Let’s first crush a myth: our problem isn’t the technology disrupting our lives. Humans will create what’s possible. They always have. The problem lies in our own comfort to reconsider what we see as “normal”, “customary” and “acceptable”. Our problem is: we think that most of what we look at is permanent when in fact, the world is in constant change.

We underestimate our need for validation and our inability to accept outside perspectives. Those are the real causes of resistance. I am convinced that if we could measure the real damage of business as usual, it would vastly outweigh the so-called threats of digitization. I would like to see an approach where anything new is met with a cool-headed evaluation. Reactive resistance contra change based on individual discomfort stands in the way of realizing beneficial trends.

These trends often end up as part of our lives anyway, built by others, who were open-minded in the first place. And, equally important, a lack of engagement with trends prevents us from making them safe and aligned with our values. I suggest training leaders on emotional intelligence and on staying curious. As soft as this sounds to our logical minds, it’s the vastly underestimated skill that nourishes our ability to be competitive. Innovation starts with the very subject in question: rethinking (innovating) the way we train our leaders, so that change can be embraced .

JUnQ: Data processing, communication, and research have become impossible without digital tools, especially in the field of technology and science. A regression has become unthinkable. Are there limitations to further digital progress?

Alex T. Steffen: Every society comfortable enough to explore this philosophical question faces a dilemma between two seemingly exclusive ideas.

Idea 1: we’ve arrived at the pinnacle of innovation. Further innovation seems unthinkable or unethical. Further innovation causes more harm than good.

Idea 2: awe-inspiring science fiction scenarios that look completely absurd but encapsulate even more human optimization potential.

The two ideas are not exclusive. Rather, they lie on opposite poles of a scale. I’m always curious where a person or society sits on that scale. In other words, how much of each idea do they express. My take is that we often ignore the bigger picture. History can provide data for a more realistic standpoint, namely that humans will continue innovating indefinitely. It’s like that because with new capabilities come ever new desires. These trigger our ingenuity anew.

This begs the question: will we be able to find a healthy balance between a paralyzing public debate about the implications of change on the one hand and co-creating the inevitable changes, so that they end up in favor of future generations? Let’s look at an example: In Sweden the question of female equality at work has largely been resolved for a few years. “We focus on doing rather than talking” an executive at Volvo shared with me. In Germany, after years of debate this is still a hot topic.

JUnQ: How will the future digital workplace look like?

Alex T. Steffen: I love this question and yet I’ll keep my answer deliberately vague. Nobody can predict the future with 100% accuracy. I sincerely hope that for most people the future workplace will be driven by vitality, intuition, and self-actualization. This will mean better health and quality of life for the individual as well as higher competitiveness for business. [1]

JUnQ: In Germany, digitalization appears to proceed more slowly than in other industrial countries. What are possible troubles and how can we overcome this gap?

Alex T. Steffen: All innovation starts in the mind. History is full of examples where German ingenuity put us in the pole position, only to be halted by doubt and cumbersome processes. We wake up and find ourselves late in the game. No question, their intention is good. But after some time of business as usual, further resistance to creative destruction creates more harm than good. In 2019 German car giant Volkswagen came out with its car for the future. Unfortunately the car is not an exponential innovation at all. It’s traditional car with an electric engine. Major improvements still require a garage.

Tesla Motors on the other hand, has shown us what a disruption of the automotive industry really looks like. Tesla has built a digital platform on which major improvements are performed over the internet via digital upgrades. The result: the need for a garage drops drastically. So does the dependency on a complex web of stakeholders, turning Tesla Motors into the more flexible player. This example shows that Germany’s industry still loves its traditions. They are safe. Planning and due diligence is our fetish. But safe does not make our designs future-proof. The key competitive edge for the future is flexibility. Sooner or later we need to start killing our legacy darlings and commit to real change.

JUnQ: How important do you see 5G in general?

Alex T. Steffen: Humans have great difficulty perceiving change that is happening right now. Change is always seen from the understanding of the past. For example, the first movies were recorded in the style of plays. Only after some time directors developed the unique movie style we know today. I see 5G as an essential building block of the future, both for business and private. The debate about the why is holding up the potential to work on the how.

JUnQ: What could be the next big step in digitalization after smart devices, AI and augmented reality?

Alex T. Steffen: I heard a fascinating statement the other day: In the last two years we have undergone more change than the previous ten. The discomfort of uncertainty makes us ask questions like this. Just like a cigarette drag they are just dangerous fixes that ignore the root problem: anxiety. We cannot trust any so-called futurists because nobody actually knows the future. Many experts’ predictions have been dramatic errors costing businesses large sums of money. Other predictions have never reached the mainstream, leaving everyone unprepared. Instead I suggest us all to take on a calm and confident attitude towards the future:

1. Being optimistic. Not all of the future is great but there’s more good than bad.

2. Embracing uncertainty. Accepting the fact that for the rest of our lives we’ll be newbies.

Build our very own ability to separate what’s important from the noise, based on concrete data points. Then decide for ourselves without taking dangerous shortcuts. To help with this I recommend three books: “The Inevitable” by Kevin Kelly, “Factfulness” by Hans Rosling, “The Rise of The Creative Class” by Richard Florida.3-5

JUnQ: The data flood is growing evermore, and coherencies seem to become impenetrable with every new discovery. How applicable is “fail fast, fail often” for the digital learning processes in terms of time and resources?

Alex T. Steffen: In the late 1800s, as economic activity grew, people were debating solutions for the drastic increase of horse dung in the streets. It was becoming a huge issue and no solutions in sight. The advent of the combustion engine solved that pressing issue within one decade. As humans evolve they design capabilities for pressing challenges. These days we’re addressing the issues caused by the combustion engine and other contributors to global heating.

In the same fashion, we’ll come up with technology that can manage and interpret existing and new data for our needs. Because of the increase of speed and complexity, prototyping in a fail fast, fail often fashion as we know it from startups remains highly relevant in my view.

JUnQ: Can you give future leaders a piece of advice to take along?

Alex T. Steffen: There’s only one, but it means everything: embrace discomfort. In order to go further we often need to tolerate some discomfort. A trampoline requires a downward strain in order to gain the force that can shoot a person up in the air. Without the down there’s no up. In most cases the internal resistance is much greater than the external struggle. In other words: it’s easier than we think. If we have a good reason to act we’ll do it. So here’s mine: if we want to leave a better world for our kids, we have to get better at embracing change.

JUnQ: Inspiring words, thank you very much for the interview, Mr. Steffen!

— Tatjana Daenzer


You can find some perspectives on how to design a future-proof workplace in Alex’ book “The Orbit Organisation” and on Alex’ blog (http://www.alextsteffen.com/blog).[1,2]

Read more:

[1] A.M. Schüller, A.T. Steffen, Die Orbit-Organisation, 2019, Gabal
[2] http://www.alextsteffen.com/blog.
[3] K. Kelly, The Inevitable, 2017, Penguin Books
[4] H. Rosling , O. Rosling, et al., Factfullness, 2018, Sceptre
[5] R. Florida, The Rise of The Creative Class, 2014, Basic Books
Sep 182019
 
Spread the love

Haydn Belfield [1] is a Research Associate and Academic Project Manager at the University of Cambridge’s Centre for the Study of Existential Risk. He is also an Associate Fellow at the Leverhulme Centre for the Future of Intelligence. He works on the international security applications of emerging technologies, especially artificial intelligence. He has a background in policy and politics, including as a Senior Parliamentary Researcher to a British Shadow Cabinet Minister, as a Policy Associate to the University of Oxford’s Global Priorities Project, and a degree in Philosophy, Politics and Economics from Oriel College, University of Oxford.
[1]hb492@cam.ac.uk

Haydn Belfield

Artificial intelligence (AI) is beginning to change our world – for better and for worse. Like any other powerful and useful technology, it can be used both to help and to harm. We explored this in a major Febuary 2018 report The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation.[1] We co-authored this report with 26 international experts from academia and industry to assess how criminals, terrorists and rogue states could maliciously use AI over the next five years, and how these misuses might be prevented and mitigated. In this piece I will cover recent advances in artificial intelligence, some of the new threats these pose, and what can be done about it.

In this piece I will cover recent advances in artificial intelligence, some of the new threats these pose, and what can be done about it.

AI, according to Nilsson, “is that activity devoted to making machines intelligent, and intelligence is that quality that enables an entity to function appropriately and with foresight in its environment”.[2] It has been a field of study from at least Alan Turing in the 1940s, and perhaps from Ada Lovelace in the 1840s. Most of the interest in recent years has come from the subfield of ‘machine learning’, in which instead of writing lots of explicit rules, one trains a system (or ‘model’) on data and the system ‘learns’ to carry out a particular task. Over the last few years there has been a notable increase in the capabilities of AI systems, and an increase in access to those capabilities.

The increase in AI capabilities is often dated from 2012’s seminal Alexnet paper.[3] This system achieved a big jump in capabilities on an image recognition task. This task has now been so comprehensively beaten that it has become a benchmark for new systems – “this method achieves state-of-the-art in less time, or at a lower cost”. Advances in natural language processing (NLP) have led to systems capable of advanced translation, comprehension and analysis of text and audio – and indeed the creation of synthetic text (OpenAI’s GPT-2) and audio (Google’s Duplex). Generative Adversarial Networks (GANs) are capable of creating incredibly convincing synthetic images and videos. The UK company DeepMind achieved fame within the AI field with their systems capable of beating Atari games from the 1980s such as Pong. But they broke into the popular imagination with their AlphaGo systems defeat of Lee Sedol at Go. AlphaGo Zero, the successor program, was also superhuman at Chess and Shogi. AI systems have continued to match or surpass human performance at more games, and more complicated games: fast-paced, complex, ‘real-time strategy’ games such as DOTA II and Starcraft II.

This increase has been driven by key conceptual breakthroughs, the application of lots of money and talented people, and an increase in computing power (or ‘compute’). For example, training AlphaGo Zero used 300,000 times as much compute as AlexNet.[4]

Access to AI systems has also increased. Most ML papers are freely, openly published by default on the online depository arXiv. Often the code or trained AI system can be freely downloaded from open source software libraries like GitHub or TensorFlow, which also tend to standardise programming methods. People new to the field can get up to speed through online courses such as Coursera, or the many tutorials available on YouTube. Instead of training their systems on their own computers, people can easily and cheaply train them on cloud computing providers such as Amazon Web Services or Microsoft Azure. Indeed the computer chips best suited to machine learning (GPUs and TPUs) are so expensive that it normally makes more sense to use a cloud provider, and only rent the time one needs. Overall then, it has become much easier, quicker and cheaper for someone to get up to speed, and create a working system of their own.

These two processes have had many benefits: new scientific advances, better and cheaper goods and services, and access to advanced capabilities from around the world. However they have also uncovered new vulnerabilities. One is the discovery of ‘adversarial examples’ – adjustments to input data so minor to be imperceptible to humans, but that cause a system to misclassify an input. For example, misclassifying a picture of a stop sign as a 45 mph speed limit sign.

These vulnerabilities has prompted some important work on ‘AI safety’, that is, reducing the risk of accidents involving AI systems in the short-term [6,7] and long-term.[8] Our report focussed, however, on AI security: reducing the risk of malicious use of AI by humans. We looked at the short-term: systems either currently or soon to be in use in the next five years.

AI is a ‘dual-use’ technology – it can be used for good or ill. Indeed it has been described as an ‘omni-use’ technology as it can be used in so many settings. Across many different areas however, common threat factors emerge. Existing threats are expanding, as automation allows a greater scale of attacks. The skill transfer and diffusion of capabilities described above will allow a wider range of people to carry out attacks that currently the preserve of experts. Novel threats are emerging, using the superhuman performance and speed of AI systems, or attacking the unique vulnerabilities of AI systems. The character of threats is being altered as attacks become more customised to particular targets, and the distance between target and attacker makes attacks harder to attribute.

These common factors will affect security in different ways – we split them into three domains.

In ‘digital security’, for example, current ‘spear phishing’ emails are tailor-made for a particular victim. An attacker trawls through all the information they can find on a target, and drafts a message aimed at that target. This process could be automated through the use of AI. An AI could trawl social media profiles for information, and draft tailored synthetic text. Attacks shift from being handcrafted to mass-produced.

In ‘physical security’, for example, civilian drones are likely to be repurposed for attacks. The Venezuelan regime claims to have been targeted by a drone assassination. Even if, as is most likely, this is propaganda, it gives an indication of threats to come. The failure of British police for several days to deal with a remote-controlled drone over Gatwick airport does not bode well.

In ‘political security’ or ‘epistemic security’, the concern is both that in repressive societies governments are using advanced data analytics to better surveil their populations and profile dissidents; and that in democratic societies polities are being polarised and manipulated through synthetic media and targeted political advertising.

We made several recommendations for policy-makers, technical researchers and engineers, company executives, and wide range of other stakeholders. Since we published the report, it has received global media coverage and was welcomed by experts in different domains, such as AI policy, cybersecurity, and machine learning. We have subsequently consulted several governments, companies and civil society groups on the recommendations of this report. It was featured in the House of Lords Select Committee on AI’s Report. We have run a workshop series on Epistemic Security with the Alan Turing Institute. The topic has received a great deal of coverage, due in part to the Cambridge Analytica scandal and Zuckerberg’s testimony to Congress. The Association for Computing Machinery (ACM) has called for impact assessment in the peer review process. OpenAI decided not to publish the full details of their GPT-2 system due to concerns about synthetic media. On physical security, the topic of Lethal Autonomous Weapons Systems has burst into the mainstream with the controversy around Google’s Project MAVEN.

Despite these promising developments, there is a lot still more to be done to research and develop policy around the malicious use of artificial intelligence, so that we can reap the benefits and avoid the misuse of this transformative technology. The technology is developing rapidly, and malicious actors are quickly adapting it to malicious ends. There is no time to wait.

Read more:

[1] Brundage, M., Avin, S., et al. (2018). The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation, arXiv:1802.07228.
[2] Nilsson, N. J. (2009). The quest for artificial intelligence. Cambridge University Press.
[3] Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems (pp. 1097-1105).
[4] Amodei, D. Hernandez, D. (2018). AI and Compute. OpenAI: https://blog.openai.com/ai-and-compute/.
[5] Karpathy, A. (2015) Breaking Convnets. http://karpathy.github.io/2015/03/30/breaking-convnets.
[6] Amodei, D., Olah, C. et al. (2016) Concrete Problems in AI Safety.
[7] Leike, J. et al. (2017) AI Safety Gridworlds. DeepMind.
[8] Bostrom, N. (2014) Superintelligence. Oxford University Press.
[9] House of Lords Select Committee on Artificial Intelligence (2018). Report of Session AI in the UK: ready, willing and able? 2017–19 HL Paper 100.
Sep 182019
 
Spread the love

Anton Bogomolov[1] is a data scientist with PhD in Physics, currently working in IoT branch. He is passionate for artificial intelligence with ten years of experience in automated data analysis and machine learning.

[1]abogomolov86@gmail.com

Anton Bogomolov

JUnQ: The everlasting technological progress is aimed to fulfill many needs of humans: most of them are physical, informational and commercial. In particular, robots were created to perform tasks that were too dangerous for humans or that humans could not or did not want to do. But what do we need intelligent machines for and what is implied by “Artificial Intelligence” (AI)?

Anton Bogomolov: The answer was already said – we need AI to make our life simpler, i.e. to simplify some routine work that humans have to do. Generally, we are heading towards automation, and in the ideal case, we want to automize everything, every kind of work. So far, the processes we are capable of automizing have been prioritized.

Now, what is understood by the term “AI”? Over the course of this interview we will go deeper in the discussion, so let’s start with a fairly broad definition: AI is something that is able to accomplish certain tasks with the help of self-learning.

JUnQ: Does it imply that AI is not meant to create anything, like art or music?

Anton Bogomolov: There is a number of definitions of AI. Indeed, the term “intelligence” implies that it can do creative work as well. It is not a simple calculator. You don’t just tell it what you want it to calculate, and then it does exactly what has been asked. It does something more complicated and, thus, it also involves some learning experience. In this context, the creative work does not necessarily mean being an artist or a musician, or a composer. A chatbot, as an example of an AI feature, is also a kind of creative work, because it is required to react accordingly or ask appropriate questions, in other words to be engaged into a conversation as a human would be i.e. express creativity.

Generally, yes, AI can generate art. For example, “Deep Dream”1 was popular a few years back. This algorithm uses AI to generate the dream-like appearance of the uploaded images. Another one is “Neural style transfer”2 which allows one to compose an image in the style of another image. Should one ever want to paint like Van Gogh or Picasso, this can be easily done, using this algorithm. There is also AI-composed music already creeping into the background of games, film, and media. With AI it is now possible to create music in different genres just at the push of a button.

JUnQ: In the news or podcasts, the term “machine learning” often seems to come together with AI. What is, simply put, machine learning and how does it relate to AI?

Anton Bogomolov: As I mentioned before there are many definitions of AI. In simple words, AI is a broader term than the machine learning (ML), i.e. AI includes ML. Being sort of an advanced algorithm, AI achieves specific goals by means of ML, at the same time it is able to adapt to its environment, just like humans. ML is also an algorithm, but a simpler one, with the key feature – the ability to learn (thus the name). It is not meant to achieve a global goal, its goal is to eventually enable programs to automatically improve through experience, without the programmer having to change the code. ML relies on working with data sets, that one needs to input first. It then examines and analyses the data to find common patterns, so that eventually it becomes possible to make experience-driven predictions or decisions.

JUnQ: So what it means is that AI does not exist without ML?

Anton Bogomolov: Right. Machine learning is a subset of AI, more like a tool to achieve AI. One example might be the first chatbots from the 90s. They had hardcoded “intelligence”, i.e hardcoded answers to possible questions. If such bot sees certain keywords it outputs accordingly relevant keywords. These did not have machine learning. But the intelligence of these was doubtful since the algorithm did not adapt. And as we discussed previously the key asset of AI is the ability to adapt.

JUnQ: Since we are on this page, how can one tell the difference between the AI system and a more “conventional” program?

Anton Bogomolov: There are “intelligence” tests for AI, among which the most renown one is the Turing Test.3 But this is more to test whether or not a system is capable of thinking like a human being. However, no AI technology today has passed the Turing test, i.e. that has shown to be convincingly intelligent and able to think. So, this is the main goal of this AI branch – we want to create a machine that will be indistinguishable from a human, in particular, that will be self-aware and act somewhat mindfully. In the end, such a machine will be able to pass the Turing test. Once again, so far, they do not exist. Self-awareness tuned out to be tough to realize.

Now, back to what was asked. I believe, no one is interested in differentiating AI from a mindless linear algorithm. Because as long as the desired goal is achieved no one cares what type of algorithm was used for it.

JUnQ: AI is no longer a futuristic concept, as some may naively think. Can you name some examples where is AI being used already? Are there any AI applications used in the everyday life of ordinary people?

Anton Bogomolov: The most straightforward example is our smartphones. The more recent ones can recognize the owner’s face. This is known to use neural networks. Also, in smartphones, there is Google assistant. Spoken inquiries are transferred to a server where neural network-based algorithms convert them to text, and which is then processed to deliver the relevant information. These are the simplest examples. We all watch Youtube where based on one’s watch history the system suggests what else one might be interested in. These AI-based recommendation engines now seem to know us to an uncanny degree.

If we now go further from everyday life, I would say AI is used pretty much in every field. In finance – there are already automatic trading robots. Some use AI for analysing financial markets to generate profitable trading strategies or make market predictions.

Autonomous driving has become very popular recently. There are even toys for children that make use of a variety of AI and ML technologies, including voice and image recognition, to identify the child and other people around, based on their voices and appearance. This all is owing to the computation power we currently have, which has advanced in the last years.

AI has found its application in medicine as well. As AI demonstrated remarkable progress in image-recognition tasks it is now widely used in medical radiology and computer tomography. One example is that there are neural networks that are trained to analyze tumours and do it as well as the top-class specialists in the field. Just as radiologists are trained to identify abnormalities based on changes in imaging intensities or the appearance of unusual patterns, AI can automatically find these features, and many others, based on its experience from the previous radiographic images, coupled with data on clinical outcomes. This also yields a more quantitative outcome, while radiologists perform only a quantitative assessment.4

JUnQ: As AI develops further is it going to make human jobs obsolete? And what will people be doing if there is nothing else to do?

Anton Bogomolov: Ideally, this is what we aim for – to have everything automized. But this can be achieved, in my opinion, only when so-called artificial general intelligence is realized. This will be a machine capable of experiencing consciousness and think autonomously and thus will be able to accomplish any intellectual task that a human being can.

What will happen to humans after all? There is a concept of universal basic income. The idea is that the robot replacing you is working on your behalf and you are given an income sufficient to meet basic needs, with zero conditions on that income. Because in the end the job is being done and the resources are being produced while you are free for other pursuits.

There has been a lot of research interest in this regard. Back in the 60’s, there was a researcher, John Bumpass Calhoun, who reported on an experiment with rats, the experiment is also known as “Universe 25”. The researchers provided rats with unlimited resources, such as water and food. Besides, they eliminated the danger otherwise coming from nature, like predators, climate, etc. Thus, the rats were said to be in “rat utopia”. At first, the population peaked but shortly after it started to exhibit a variety of abnormal, often destructive behaviours. After some time of the experiment, the rats became too lazy to reproduce and the population was on its way to extinction. There is, of course, the controversy over the implications of the experiment but it can be perceived as one of the possible scenarios of the future.

JUnQ: What about the programming jobs? And scientists?

Anton Bogomolov: Well, first we automize what we can do – so far, the simplest work. AI is now partly replacing the jobs of translators and customer service work. The next in line are self-driving cars that will automize the entire transportation industry, bus, and taxi drivers and so on. But programming jobs are of a different kind, they are creative. Programs that develop other programs exist already, but they are rather limited in what they can do.

Eventually, all jobs will be replaced. Programming jobs will be among the last ones though. Just as other creative jobs, including scientists.

One day we will have a super-intelligent machine, that develops further programs similar to itself at less expense and much faster compared to when supervised by humans. At some point we might not be able to follow its advances anymore and here comes the term “technological singularity”. This is believed to occur when AI starts discovering new science at enormous rates while always learning and evolving on top of it uncontrollably from human’s side.

JUnQ: Is the “singularity” inevitable?

Anton Bogomolov: There is an everlasting argument whether at all it is possible to realize a self-aware AI, that will act mindfully, much like a human. Therefore, depending on “yes” or “no” there will be a technological singularity or not. It can as well occur for other reasons, it is just that among others AI is more likely to bring us to the technological singularity.

On the other hand, it is not proven that such AI can ever be created, to be able to run autonomously and replace all of us. In this case, there will be no AI-induced singularity.

So, this is now a really hot topic in the community.

JUnQ: Does it mean that self-awareness is prerequisite for a possible singularity to occur and we are not yet passed the point of no return?

Anton Bogomolov: Right. The algorithms that exist now and are known to beat the world-class champions in chess and Go are harmless. They are just trained extraordinary well on one particular subject, to achieve a well-defined goal. They are not able to think outside of the box, like “what else is there that I could do”.

Once we create a machine that will be able to think this way, to exhibit human-level consciousness, it is expected to bring us to the singularity. Because it will be able to operate and develop without any supervision. All existing AI technologies do develop themselves but only to a certain degree, they do not have this freedom yet.

JUnQ: Speaking about self-awareness. For example, Sophia – the social humanoid robot developed by Hanson Robotics – realizes itself (herself) as being a programmed female robot. Does it mean that she is self-aware? How did they manage to program “her” self-realization?

Anton Bogomolov: As far as I understand she is programmed to answer this way. If there comes a question about what she thinks she is, her answer will be according to what has been built in her program. Most likely she was trained on thousands of real dialogs among people about their self-awareness. Like other AI systems, she also has machine learning that, if you feed it with enough data, will enable her to learn how to answer and how to behave, as people would.

Sophia communicates very well on a topic known in advance. Because in this case she can get trained in advance: they provide her with enough information about a given topic to get trained. Then she is able to have a sensible conversation because she has the statistics on what is typically answered when. Nevertheless, it is not as simple as when you say X, she replies Y. Thanks to machine learning what she says is a result of rather complicated non-linear connections.

I did not have a chance to speak with her personally though, but I think she is certainly not self-aware. Otherwise, the singularity would have been just around the corner by now. If she had a human-level consciousness, there would be nothing that she would need people for. She would be able to program herself to increase her memory. In just a few days she would reach the level of intelligence of all the people on Earth. In a few more days we would not be able to comprehend what level of intelligence she would have – again the exponential progress.

So, there is nothing we should worry about. She is still just a robot – more about illusion than intelligence. The shocking effect is also due to the fact that she looks like a human, has emotions and facial expressions. This unique combination of her features might make us a bit alert. And for sure Sophia is a great representation of all the advances of AI technology.

In fact, to able to realize human-level AI we essentially need to model a human’s brain. The human brain contains around 10 neurons. On the other hand, functional neural networks have in the order of tens of millions of neurons. These four orders of magnitude difference are sizeable. Moreover, it also takes quite some time to train a system with a large number of neurons. At the end of the day, we do not yet have the capacity to realize a human-level AI.

JUnQ: In case something goes wrong, will we able to “unplug” the machine. Do autonomous AI systems exist yet?

Autonomous systems do exist. Think of a toy-dog, that we have discussed already, or a vacuum cleaner, they are programmed to charge when needed. These are completely autonomous as long as the power source is available. Military branch sure has got some as well. I can imagine an armed flying drone, self-charging, and self-rechargeable.

But the existing autonomous AI systems are not a threat to humans. Despite having all the advantages of machine learning they follow a defined program to accomplish a specific task. It can be the best in recognizing people’s faces, shooting targets or avoiding bullets. But it is still a mindless machine, that we can destroy, or fool or at least hide all the power stations from it.

As long as any of these do not have human-level intelligence, as long as they are not smarter than us, they should not be considered as a potential threat.

JUnQ: So reaching human-level intelligence would be the point from which on AI can potentially live without us.

Anton Bogomolov: Correct. There is an opinion that biological life is just a means to create an electronic life. In other words, some believe that this is our mission, to give birth to an electronic conscious creature, surpassing our capacity, that will develop much faster than humans. In some sense, it is similar to the early times of our planet. Life on Earth began relatively early. But the first living creatures – unicellular organisms – were progressing very slowly, until the multicellular organism occurred, which boosted the progress tremendously. And the progress always seems to be exponential. Thus, the idea of this theory is that we create something to keep up to this exponential progress. And if we look at it globally, like in the scale of the Universe, if this should ever happen that AI takes over the world, it would make sense. Because AI would go further exploring the Universe much faster than we would. Thus, from the point of view of global progress, it would be more advantageous.

JUnQ: Now, when you put it this way the technological singularity does not sound so frustrating anymore. Are you optimistic overall? Will we make it to the end of the 21st century?

Anton Bogomolov: To me, it feels great to witness the progress and to be a part of it. But we will see how it goes. We live within a self-organized system, where everything has got a direction to go. Even though humans are all independent creatures, we still obey the same laws of synergy, we self-organize as well, we cluster forming cities, etc. And sure we also have something to move towards, thus we develop and evolve. So, this progress is so natural.

In fact, experts expect the technological singularity to occur already in the 21st century. But it is not trivial to give a correct estimate. On the other hand, not related to AI, there is research going on in the field of so-called negligible senescence. The idea is that by engineering the reversal of all the major molecular and cellular changes that occur with age we would enable us to constantly rejuvenate ourselves. The researchers believe that negligible aging for humans will be achieved in this century. There even exists a provocative opinion that the first human beings who will live to 1,000 years old are already alive.

At the end of the day, there has been tremendous progress in many fields, not only AI. Along with AI, we may succeed in developing other technologies, which will help us to prolong our lives as well as humans’ in general.

JUnQ: Thank you very much for the interview!

— Mariia Filianina

Read more:

[1] http://deepdreamgenerator.com
[2] L.A. Gatys, A.S. Ecker and M. Bethge arXiv1508.06576 (2015).
[3] https://en.wikipedia.org/wiki/Turing_test
[4] A. Hosny, C. Parmar, J. Quackenbush, L.H. Schwartz and H.J.W.L. Aerts Nature Reviews Cancer 18, 500 (2018).
[5] https://www.ted.com/speakers/aubrey_de_grey

Sep 102019
 
Spread the love

Curious things happen around us all the time – and sometimes we are so familiar with them that we do not even notice them anymore.

If you read the title you might now think that this article was about the Leidenfrost effect [1], that is, this little funny dance water droplets perform on a hot surface such as a frying pan. It is not, though. The Leidenfrost effect occurs when a material – usually a liquid – meets a surface far above its boiling temperature. A thin layer of the droplet’s surface will then evaporate rapidly, causing a protective gas coating to appear that effectively insulates the droplet and lets it last longer on the hot surface. Similar effects can also be seen with liquid nitrogen on a material at room temperature. These droplets appear to travel around due to ejected gasses. But does a similar phenomenon also occur without the necessity of a hot surface?

There is in fact a location where such an effect occurs regularly without us usually noticing: The bathroom. Under certain conditions water droplets can be seen moving on a surface of water as if they had hydrophobic properties. The easiest way to see them is in the shower, when the shower floor is already covered in a thin layer of water. If new water droplets now impact on this surface at certain angles and speeds, they can be seen rushing around for a while before disappearing. It turns out that in recent years a few scientific publications were dedicated to investigating this effect more closely. [2,3] With a high-speed camera, the bouncing effect can be visualized rather easily, as shown in Fig. 1: The droplet appears to cause a dent in the water surface and then bounce off without merging with the rest of the liquid. Of course, the first idea that comes into mind now is the Leidenfrost effect, where a similar behavior can be seen caused by a layer of vapor. However, here no high temperatures are involved and thus the generation of water vapor is negligible.

Figure 2: A schematic depiction of the resistance time phenomenon. On impact, a thin layer of gas (air) is compressed on the surface, causing a protection from immediate coalescence. However, eventually, the air escapes and the lower periphery of the droplet merges with the rest of the liquid. The surface tension can then rapidly squeeze the edges of the droplet together, causing the upper half of the droplet to be cut off from the rest. It can then repeat the bouncing process if the conditions are right. Reproduced from [4].

The first intuition of an air coating to protect the water droplet is still standing, though, and thus the scientists tried to model the behavior. It turns out that there is indeed a protective coating of air, which can get compressed when the droplet approaches the surface of the liquid underneath. The air simply cannot escape quickly enough and therefore protects the droplet on impact and pushes away from the water surface. This phenomenon causes what is called the residence time of a droplet, that is, the time a droplet can sit on top of a pool of the same liquid before coalescing (see Fig. 2). The theory was confirmed by lowering the ambient air pressure around the experiment, which caused the residence time to decrease. [4] However, one would expect that this thin layer of gas should not withstand a heavy impact of a droplet coming from e.g. the shower head with a lot of speed and thus kinetic energy.

An explanation can be found using a simple speaker membrane: When the droplets are put in contact with an oscillation surface, like water on an oscillating speaker, the bouncing is facilitated, and the droplets can remain intact for much longer. Moreover, the droplets now travel around just like they do in a shower! High-speed camera footage can show the reason for this change in behavior: The surface of the water pool, excited into periodic up- and down-movement patterns, gently catches the droplet if the surface is moving downwards in the moment of impact and therefore prevents the impact from destroying the protective gas layer. It is just like gently catching a water balloon with your hand by grabbing it in motion and then slowing it down. Additionally, the continuous movement of the surface seems to stabilize the gas layer and therefore massively increases the residence time, all while allowing the droplet to travel from minimum to minimum, thus creating the “walking water” effect. [6] In a shower, the impact of many, many droplets cause the surface of the water pool on the ground to oscillate in a similar manner, creating landing spots for some droplets that then move around the surface. The phenomenon can thus be explained by the residence time of a droplet together with an oscillating surface.

Finally, one can reproduce a similar behavior in space, where microgravity does not pull the droplets down. An air bubble inside of a water bubble can thus act like an isolated system where droplets can form and move… excited by the sound of a cello! If you got curious, please check out the beautiful footage in Ref. [6] where much of the inspiration of this article came from.

As stated initially, the most curious things happen around us and we simply have to notice them.

— Kai Litzius

References:

[1] https://www.engineersedge.com/physics/leidenfrost_effect_13089.htm

[2] Y. Couder et al., From Bouncing to Floating: Noncoalescence of Drops on a Fluid Bath, Phys. Rev. Lett. 94, 177801 (2005).

[3] J. Molácek & J. W. M. Bush, Drops bouncing on a vibrating bath, J. Fluid Mech. 727, 582-611 (2013).

[4] I. Klyuzhin et al., Persisting Water Droplets on Water Surfaces, J. Phys. Chem. B 114, 14020-14027 (2010).

[5] https://upload.wikimedia.org/wikipedia/commons/1/1d/Bouncing_droplets.gif

[6] https://www.youtube.com/watch?v=KJDEsAy9RyM (Water bubble in space at time index 8:18).
 

 Tagged with: